NUMERICAL APPROXIMATION OF THE DISPLACEMENT FORMULATION OF THE AXISYMMETRIC ACOUSTIC VIBRATION PROBLEM

Querales, Jose; Rodriguez, Rodolfo; Venegas, Pablo

Abstract

The aim of this paper is to study the numerical approximation of the displacement formulation of the acoustic eigenvalue problem in the axisymmetric case. We show that spurious eigenvalues appear when lowest order triangular Raviart-Thomas elements are used to discretize the problem. We propose an alternative weak formulation of the spectral problem which allows us to avoid this drawback. A finite element discretization based on the same finite elements is proposed and analyzed. Quasi-optimal order spectral convergence is proved, as well as absence of spurious modes. Numerical experiments are reported which agree with the theoretical results.

Más información

Título según WOS: NUMERICAL APPROXIMATION OF THE DISPLACEMENT FORMULATION OF THE AXISYMMETRIC ACOUSTIC VIBRATION PROBLEM
Título de la Revista: SIAM JOURNAL ON SCIENTIFIC COMPUTING
Volumen: 43
Número: 3
Editorial: SIAM PUBLICATIONS
Fecha de publicación: 2021
Página de inicio: A1583
Página final: A1606
DOI:

10.1137/20M1346225

Notas: ISI