A conforming mixed finite-element method for the coupling of fluid flow with porous media flow
Abstract
We consider a porous medium entirely enclosed within a fluid region and present a well-posed conforming mixed finite-element method for the corresponding coupled problem. The interface conditions refer to mass conservation, balance of normal forces and the Beavers-Joseph-Saffman law, which yields the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier. The finite-element subspaces defining the discrete formulation employ Bernardi-Raugel and Raviart-Thomas elements for the velocities, piecewise constants for the pressures and continuous piecewise-linear elements for the Lagrange multiplier. We show stability, convergence and a priori error estimates for the associated Galerkin scheme. Finally, we provide several numerical results illustrating the good performance of the method and confirming the theoretical rates of convergence.
Más información
| Título según WOS: | A conforming mixed finite-element method for the coupling of fluid flow with porous media flow |
| Título según SCOPUS: | A conforming mixed finite-element method for the coupling of fluid flow with porous media flow |
| Título de la Revista: | IMA JOURNAL OF NUMERICAL ANALYSIS |
| Volumen: | 29 |
| Número: | 1 |
| Editorial: | OXFORD UNIV PRESS |
| Fecha de publicación: | 2009 |
| Página de inicio: | 86 |
| Página final: | 108 |
| Idioma: | English |
| URL: | http://imanum.oxfordjournals.org/cgi/doi/10.1093/imanum/drm049 |
| DOI: |
10.1093/imanum/drm049 |
| Notas: | ISI, SCOPUS |