Spectra of generalized Bethe trees attached to a path
Abstract
A generalized Bethe tree is a rooted tree in which vertices at the same distance from the root have the same degree. Let Pm be a path of m vertices. Let {Bi : 1 ≤ i ≤ m} be a set of generalized Bethe trees. Let Pm {Bi : 1 ≤ i ≤ m} be the tree obtained from Pm and the trees B1, B2, ..., Bm by identifying the root vertex of Bi with the i - th vertex of Pm. We give a complete characterization of the eigenvalues of the Laplacian and adjacency matrices of Pm {Bi : 1 ≤ i ≤ m}. In particular, we characterize their spectral radii and the algebraic conectivity. Moreover, we derive results concerning their multiplicities. Finally, we apply the results to the case B1 = B2 = ... = Bm. © 2008 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | Spectra of generalized Bethe trees attached to a path |
| Título según SCOPUS: | Spectra of generalized Bethe trees attached to a path |
| Título de la Revista: | LINEAR ALGEBRA AND ITS APPLICATIONS |
| Volumen: | 430 |
| Número: | 1 |
| Editorial: | Elsevier Science Inc. |
| Fecha de publicación: | 2009 |
| Página de inicio: | 483 |
| Página final: | 503 |
| Idioma: | English |
| URL: | http://linkinghub.elsevier.com/retrieve/pii/S0024379508003947 |
| DOI: |
10.1016/j.laa.2008.08.009 |
| Notas: | ISI, SCOPUS |