Applications of a theorem by Ky Fan in the theory of Laplacian energy of graphs

Robbiano, M; Jimenez, R

Abstract

The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues to their average, which in turn is equal to the sum of singular values of a shift of Laplacian matrix of G. Let X, Y, and Z be matrices, such that Z = X+Y. Ky Fan has established an inequality between the sum of singular values of Z and the sum of the sum of singular values of X and Y respectively. We apply this inequality to obtain new results in the theory of Laplacian energy of a graph.

Más información

Título según WOS: Applications of a theorem by Ky Fan in the theory of Laplacian energy of graphs
Título según SCOPUS: Applications of a theorem by Ky fan in the theory of Laplacian energy of graphs
Título de la Revista: MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY
Volumen: 62
Número: 3
Editorial: UNIV KRAGUJEVAC, FAC SCIENCE
Fecha de publicación: 2009
Página de inicio: 537
Página final: 552
Idioma: English
Notas: ISI, SCOPUS