EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO SOME INHOMOGENEOUS NONLOCAL DIFFUSION PROBLEMS
Abstract
We consider the nonlocal evolution Dirichlet problem ut(x, t) = ∫?(x-y/g(y)) u(y,t)/g(y)N-u(x,t), x ?, t> 0; u = 0, x ?&Rdbl;N\?, t > 0; u(x, 0) = u0(x), x ?&Rdbl;N; where ? is a bounded domain in RN, J is a Hölder continuous, nonnegative, compactly supported function with unit integral and g ? C(¯) is assumed to be positive in ?. We discuss existence, uniqueness, and asymptotic behavior of solutions as t ? +8. Moreover, we prove the existence of a positive stationary solution when the inequality g(x) = d(x) holds at every point of ?, where d(x)= dist(x, ?). The behavior of positive stationary solutions near the boundary is also analyzed. © 2009 Society for Industrial and Applied Mathematics.
Más información
Título según WOS: | EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO SOME INHOMOGENEOUS NONLOCAL DIFFUSION PROBLEMS |
Título según SCOPUS: | Existence and asymptotic behavior of solutions to some inhomogeneous nonlocal diffusion problems |
Título de la Revista: | SIAM JOURNAL ON MATHEMATICAL ANALYSIS |
Volumen: | 41 |
Número: | 5 |
Editorial: | SIAM PUBLICATIONS |
Fecha de publicación: | 2009 |
Página de inicio: | 2136 |
Página final: | 2164 |
Idioma: | English |
URL: | http://epubs.siam.org/doi/abs/10.1137/090751682 |
DOI: |
10.1137/090751682 |
Notas: | ISI, SCOPUS |