EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO SOME INHOMOGENEOUS NONLOCAL DIFFUSION PROBLEMS

Cortázar C.; Elgueta, M; Garcia-Melian, J; Martínez, S.

Abstract

We consider the nonlocal evolution Dirichlet problem ut(x, t) = ∫?(x-y/g(y)) u(y,t)/g(y)N-u(x,t), x ?, t> 0; u = 0, x ?&Rdbl;N\?, t > 0; u(x, 0) = u0(x), x ?&Rdbl;N; where ? is a bounded domain in RN, J is a Hölder continuous, nonnegative, compactly supported function with unit integral and g ? C(¯) is assumed to be positive in ?. We discuss existence, uniqueness, and asymptotic behavior of solutions as t ? +8. Moreover, we prove the existence of a positive stationary solution when the inequality g(x) = d(x) holds at every point of ?, where d(x)= dist(x, ?). The behavior of positive stationary solutions near the boundary is also analyzed. © 2009 Society for Industrial and Applied Mathematics.

Más información

Título según WOS: EXISTENCE AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO SOME INHOMOGENEOUS NONLOCAL DIFFUSION PROBLEMS
Título según SCOPUS: Existence and asymptotic behavior of solutions to some inhomogeneous nonlocal diffusion problems
Título de la Revista: SIAM JOURNAL ON MATHEMATICAL ANALYSIS
Volumen: 41
Número: 5
Editorial: SIAM PUBLICATIONS
Fecha de publicación: 2009
Página de inicio: 2136
Página final: 2164
Idioma: English
URL: http://epubs.siam.org/doi/abs/10.1137/090751682
DOI:

10.1137/090751682

Notas: ISI, SCOPUS