Sequence entropy and rigid sigma-algebras
Abstract
We study relationships between sequence entropy and the Kronecker and rigid algebras. Let (Y,y,v,T) be a factor of a measure-theoretical dynamical system (X, X, µ, T) and S be a sequence of positive integers with positive upper density. We prove there exists a subsequence ACS such that hA µ(T,e | y) = Hµ(e | K.(X | Y)) for all finite partitions e, where K.(X | Y) is the Kronecker algebra over y. A similar result holds for rigid algebras over y. As an application, we characterize compact, rigid and mixing extensions via relative sequence entropy. © Instytut Matematyczny PAN, 2009.
Más información
| Título según WOS: | Sequence entropy and rigid sigma-algebras |
| Título según SCOPUS: | Sequence entropy and rigid ?-algebras |
| Título de la Revista: | STUDIA MATHEMATICA |
| Volumen: | 194 |
| Número: | 3 |
| Editorial: | POLISH ACAD SCIENCES INST MATHEMATICS-IMPAN |
| Fecha de publicación: | 2009 |
| Página de inicio: | 207 |
| Página final: | 230 |
| Idioma: | English |
| URL: | http://journals.impan.pl/cgi-bin/doi?sm194-3-1 |
| DOI: |
10.4064/sm194-3-1 |
| Notas: | ISI, SCOPUS |