Eruption Forecasting Model for Copahue Volcano (Southern Andes) Using Seismic Data and Machine Learning: A Joint Interpretation with Geodetic Data (GNSS and InSAR)
Abstract
Anticipating volcanic eruptions remains a challenge despite significant scientific advancements, leading to substantial human and economic losses. Traditional approaches, like volcano alert levels, provide current volcanic states but do not always include eruption forecasts. Machine learning (ML) emerges as a promising tool for eruption forecasting, offering data-driven insights. We propose an ML pipeline using volcano-seismic data, integrating precursor extraction, classification modeling, and decision-making for eruption alerts. Testing on six Copahue volcano eruptions demonstrates our models ability to identify precursors and issue advanced warnings pseudoprospectively. Our model provides alerts 575 hr before eruptions and achieving a high true negative rate, indicating robust discriminatory power. Integrating short- and long-term data reveals seismic sensitivity, emphasizing the need for comprehensive volcanic monitoring. Our approach showcases MLs potential to enhance eruption forecasting and risk mitigation. In addition, we analyze long-term geodetic data (Interferometric Synthetic Aperture Radar and Global Navigation Satellite System) to assess Copahue volcano deformation trends, in which we notice an absence of noteworthy deformation in the signals associated with the six small eruptions, aligning with their small magnitude. © Seismological Society of America.
Más información
| Título según WOS: | Eruption Forecasting Model for Copahue Volcano (Southern Andes) Using Seismic Data and Machine Learning: A Joint Interpretation with Geodetic Data (GNSS and InSAR) |
| Título según SCOPUS: | Eruption Forecasting Model for Copahue Volcano (Southern Andes) Using Seismic Data and Machine Learning: A Joint Interpretation with Geodetic Data (GNSS and InSAR) |
| Título de la Revista: | Seismological Research Letters |
| Volumen: | 95 |
| Número: | 5 |
| Editorial: | Seismological Society of America |
| Fecha de publicación: | 2024 |
| Página de inicio: | 2595 |
| Página final: | 2610 |
| Idioma: | English |
| DOI: |
10.1785/0220240022 |
| Notas: | ISI, SCOPUS |