NITSCHE METHOD FOR NAVIER-STOKES EQUATIONS WITH SLIPBOUNDARY CONDITIONS: CONVERGENCE ANALYSIS AND VMS-LESSTABILIZATION

Bansal A.; Barnafi, N.A.; Pandey, DN

Keywords: navier-stokes equations, banach fixed point theorem, A priori analysis, Nitsche's method, Navier boundary conditions, Banach-Ne & ccaron, as-Babu & scaron, ka theorem, variational multiscale modeling, large eddy simulation

Abstract

In this paper, we analyze Nitsche's method for the stationary Navier'Stokes equations on Lipschitz domains under minimal regularity assumptions. Our analysis provides a robust formulation for implementing slip (i.e., Navier) boundary conditions in arbitrarily complex boundaries. The well-posedness of the discrete problem is established using the Banach Ne?as'Babuška and Banach fixed point theorems under standard small data assumptions. We also provide optimal convergence rates for the approximation error. Furthermore, we propose a quasi-static VMS-LES formulation with Nitsche for the Navier'Stokes equations with slip boundary conditions to address the simulation of incompressible fluids at high Reynolds numbers. We validate our theory through several numerical tests in well-established benchmark problems. © The authors. Published by EDP Sciences, SMAI 2024.

Más información

Título según WOS: NITSCHE METHOD FOR NAVIER-STOKES EQUATIONS WITH SLIPBOUNDARY CONDITIONS: CONVERGENCE ANALYSIS AND VMS-LESSTABILIZATION
Título según SCOPUS: Nitsche method for Navier'Stokes equations with slip boundary conditions: convergence analysis and VMS-LES stabilization
Título de la Revista: ESAIM: Mathematical Modelling and Numerical Analysis
Volumen: 58
Número: 5
Editorial: EDP Sciences
Fecha de publicación: 2024
Página de inicio: 2079
Página final: 2115
Idioma: English
DOI:

10.1051/m2an/2024070

Notas: ISI, SCOPUS