A comprehensive review on arsenic contamination in groundwater: Sources, detection, mitigation strategies and cost analysis

Sultan, MW; Qureshi, F; Ahmed, S; Kamyab, H; Rajendran, S; Ibrahim, H; Yusuf, M

Keywords: arsenic, groundwater contamination, health risk, Pollutant mitigation, Environmental challenge, Policy intervention

Abstract

While groundwater is commonly perceived as safe, the excessive presence of trace metals, particularly arsenic (As), can pose significant health hazards. This review examines the current scenario of pollutants and their mitigations focusing on As contamination in groundwater across multiple nations, with a specific emphasis on the Indian Peninsula. Arsenic pollution surpasses the WHO limit of 10 ppb in 107 countries, impacting around 230 million people worldwide, with a substantial portion in Asia, including 20 states and four union territories in India. Analysis of the correlation between the aquifer and arsenic poisoning highlights severe contamination in groundwater originating from loose sedimentary aquifer strata, particularly in recently formed mountain ranges with geological sources presumed to contribute over 90% of arsenic pollution, i.e. a big environmental challenge. A myriad of techniques, including chromatographic, electrochemical, biological, spectroscopic, and colorimetric methods among others, are available for the detection and removal of arsenic from groundwater. Removal strategies encompass a wide array of approaches such as bioremediation, adsorption, coagulation/flocculation, ion exchange, biological processes, membrane treatment, and oxidation techniques specifically tailored for affected areas. Constructed wetlands help to eliminate heavy metal impurities such as As, Zn, Cd, Cu, Ni, Fe, and Cr. Their efficiency is influenced by design and environmental factors. Nanotechnology and nanoparticles have recently been studied to remove arsenic and toxic metal ions from water. Cost-effective solutions including community-based mitigation initiatives, alongside policy and regulatory frameworks addressing arsenic contamination, are essential considerations. © 2024 The Authors

Más información

Título según WOS: A comprehensive review on arsenic contamination in groundwater: Sources, detection, mitigation strategies and cost analysis
Título según SCOPUS: A comprehensive review on arsenic contamination in groundwater: Sources, detection, mitigation strategies and cost analysis
Título de la Revista: Environmental Research
Volumen: 265
Editorial: ACADEMIC PRESS INC
Fecha de publicación: 2025
Idioma: English
DOI:

10.1016/j.envres.2024.120457

Notas: ISI, SCOPUS