Existence and uniqueness of discrete weighted pseudo S-asymptotically ω-periodic solution to abstract semilinear superdiffusive difference equation

González-Camus J.

Keywords: resolvent families, Fractional calculus (primary), unbounded linear operators, Fractional difference equations, Weighted pseudo asymptotically periodic

Abstract

In this paper, we establish sufficient conditions in order to guarantee the existence and uniqueness of discrete weighted pseudo S-asymptotically omega-periodic solution to the semilinear fractional difference equation {C del(alpha)u(n)=Au-n+g(n)(u(n)), n >= 2, u(0)=x(0)is an element of X, u(1)=x(1)is an element of X, where 1<2, A is a closed linear operator in a Banach space X which generates an (alpha,beta)-resolvent sequence {S-alpha,beta(n)}n is an element of N-0 subset of B(X) and g:N(0)xX -> X a discrete weighted pseudo S-asymptotically omega-periodic function satisfying suitable Lipschitz type conditions in the spatial variable (local and global), based in fixed point Theorems. In order to achieve this objective, we prove invariance by convolution and principle of superposition for a class of suitables function spaces.

Más información

Título según WOS: Existence and uniqueness of discrete weighted pseudo S-asymptotically ω-periodic solution to abstract semilinear superdiffusive difference equation
Volumen: 28
Número: 1
Fecha de publicación: 2025
Página de inicio: 430
Página final: 452
Idioma: English
DOI:

10.1007/s13540-024-00366-1

Notas: ISI