Existence and uniqueness of discrete weighted pseudo S-asymptotically ω-periodic solution to abstract semilinear superdiffusive difference equation
Keywords: resolvent families, Fractional calculus (primary), unbounded linear operators, Fractional difference equations, Weighted pseudo asymptotically periodic
Abstract
In this paper, we establish sufficient conditions in order to guarantee the existence and uniqueness of discrete weighted pseudo S-asymptotically ?-periodic solution to the semilinear fractional difference equation (Formula presented.) where 1<2,A is a closed linear operator in a Banach space X which generates an (?,?)-resolvent sequence {S?,?n}n?N0?B(X) and g:N0×X?X a discrete weighted pseudo S-asymptotically ?-periodic function satisfying suitable Lipschitz type conditions in the spatial variable (local and global), based in fixed point Theorems. In order to achieve this objective, we prove invariance by convolution and principle of superposition for a class of suitables function spaces. © Diogenes Co.Ltd 2025.
Más información
| Título según WOS: | Existence and uniqueness of discrete weighted pseudo S-asymptotically ω-periodic solution to abstract semilinear superdiffusive difference equation |
| Título según SCOPUS: | Existence and uniqueness of discrete weighted pseudo S-asymptotically ?-periodic solution to abstract semilinear superdiffusive difference equation |
| Título de la Revista: | Fractional Calculus and Applied Analysis |
| Volumen: | 28 |
| Número: | 1 |
| Editorial: | Springer Nature |
| Fecha de publicación: | 2025 |
| Página de inicio: | 430 |
| Página final: | 452 |
| Idioma: | English |
| DOI: |
10.1007/s13540-024-00366-1 |
| Notas: | ISI, SCOPUS |