Synthesis and Characterization of HfO2@Fe3O4 Core-Shell Nanotubes: Insights into Potential Magnetic Functionalities

Grifferos, L; Alburquenque, D; Vargas, J; Kumar, C; Saavedra, E; Pereira, A; Marco, JF; Escrig, J

Keywords: xps, magnetic properties, ALD, Core-shell nanostructures, Fractalanalysis, MOKE

Abstract

This study presents the synthesis and characterization of core-shell nanostructures comprising PVP@HfO2@Fe2O3 nanowires and HfO2@Fe3O4 nanotubes. PVP nanofibers were electrospun with an average diameter of approximately 379 nm, onto which HfO2 and Fe2O3 layers were sequentially deposited via atomic layer deposition, resulting in core-shell nanowires averaging 460 nm in diameter. Thermal reduction transformed Fe2O3 into Fe3O4, forming HfO2@Fe3O4 core-shell nanotubes. Characterization using scanning electron microscopy and high-resolution transmission electron microscopy confirmed the core-shell morphology, while energy-dispersive X-ray spectroscopy verified the elemental composition. Surface roughness analysis revealed fractal dimensions indicating increased roughness with thicker shells. X-ray photoelectron spectroscopy analysis identified Fe(II) and Fe(III) oxidation states and confirmed phase transformations from hematite to magnetite. Magnetic measurements demonstrated enhanced coercivity and saturation magnetization in HfO2@Fe3O4 structures compared to initial samples, showcasing the tunability of magnetic properties through core-shell engineering. This work highlights atomic layer deposition’s capability to fabricate precise core-shell nanostructures, offering tailored control over morphology and magnetic behavior for applications in advanced nanotechnologies. © 2025 American Chemical Society.

Más información

Título según WOS: Synthesis and Characterization of HfO2@Fe3O4 Core-Shell Nanotubes: Insights into Potential Magnetic Functionalities
Título según SCOPUS: Synthesis and Characterization of HfO2@Fe3O4 Core-Shell Nanotubes: Insights into Potential Magnetic Functionalities
Título de la Revista: ACS Applied Electronic Materials
Volumen: 7
Número: 9
Editorial: American Chemical Society
Fecha de publicación: 2025
Página de inicio: 4103
Página final: 4113
Idioma: English
DOI:

10.1021/acsaelm.5c00280

Notas: ISI, SCOPUS