Prediction of water chemical properties in the cycle of a coal power plant using artificial neural networks
Abstract
This paper describes a systematic methodology based on artificial neural networks for model identification and its application to the prediction of water chemical properties under normal operation conditions in a power plant. The model obtained allows to detect incipient anomalies by comparison between the real and predicted values.
Más información
| Editorial: | IEEE | 
| Fecha de publicación: | 1998 | 
| Año de Inicio/Término: | 4-9 May 1998 | 
| Página de inicio: | 1981 | 
| Página final: | 1986 | 
| Idioma: | English | 
| URL: | https://ieeexplore.ieee.org/document/687163 | 
| DOI: | 10.1109/IJCNN.1998.687163 | 
 Portal del Investigador
						 Portal del Investigador