Well-Posedness for Fractional Cauchy Problems Involving Discrete Convolution Operators
Abstract
This work focused on establishing sufficient conditions to guarantee the well-posedness of the following nonlinear fractional semidiscrete model: {Dt?u(n,t)=Bu(n,t)+f(n-ct,u(n,t)),n?Z,t>0,u(n,0)=?(n),n?Z, under the assumptions that ?? (0 , 1] , c> 0 some constant, and B is a discrete convolution operator with kernel b? ?1(Z) , which is the infinitesimal generator of the Markovian C -semigroup and suitable nonlinearity f. We present results concerning the existence and uniqueness of solutions, as well as establishing a comparison principle of solutions according to the respective initial values. © 2023, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
Más información
| Título según WOS: | Well-Posedness for Fractional Cauchy Problems Involving Discrete Convolution Operators |
| Título según SCOPUS: | Well-Posedness for Fractional Cauchy Problems Involving Discrete Convolution Operators |
| Título de la Revista: | Mediterranean Journal of Mathematics |
| Volumen: | 20 |
| Número: | 5 |
| Editorial: | Birkhauser |
| Fecha de publicación: | 2023 |
| Idioma: | English |
| DOI: |
10.1007/s00009-023-02443-w |
| Notas: | ISI, SCOPUS |