A Bayesian Nonparametric Test for Cross-Group Differences Relative to a Control

Gutiérrez, Iván; Gutiérrez, Luis; Alvares, Danilo; Argiento, R; Camerlenghi, F; Paganin, S

Abstract

We propose a new Bayesian nonparametric multivariate testing procedure for comparing several treatments against a control. The test is based on a general model where the distribution of each treatment group can be identical to (or different from) the control group distribution, depending on the value of a latent binary vector. This vector is endowed with a spike-and-slab prior distribution carefully chosen to ensure a multiplicity correction. Group distributions are modeled in a flexible way using a dependent Dirichlet process. Monte Carlo experiments suggest that our proposal performs better than state-of-the-art frequentist alternatives for small sample sizes.

Más información

Editorial: Springer
Fecha de publicación: 2022
Año de Inicio/Término: 1-3 September 2021
Página de inicio: 79
Página final: 89
URL: https://doi.org/10.1007/978-3-031-16427-9_8