Characterizations, Dynamical Systems and Gradient Methods for Strongly Quasiconvex Functions

Lara, F; Marcavillaca, RT; Vuong, PT

Keywords: nonconvex optimization, dynamical systems, quasiconvex function, gradient descent, Heavy ball method, Linear convergence

Abstract

We study differentiable strongly quasiconvex functions for providing new properties for algorithmic and monotonicity purposes. Furthermore, we provide insights into the decreasing behaviour of strongly quasiconvex functions, applying this for establishing exponential convergence for first- and second-order gradient systems without relying on the usual Lipschitz continuity assumption on the gradient of the function. The explicit discretization of the first-order dynamical system leads to the gradient descent method while discretization of the second-order dynamical system with viscous damping recovers the heavy ball method. We establish the linear convergence of both methods under suitable conditions on the parameters as well as numerical experiments for supporting our theoretical findings.

Más información

Título según WOS: Characterizations, Dynamical Systems and Gradient Methods for Strongly Quasiconvex Functions
Título de la Revista: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
Volumen: 206
Número: 3
Editorial: SPRINGER/PLENUM PUBLISHERS
Fecha de publicación: 2025
Idioma: English
DOI:

10.1007/s10957-025-02728-y

Notas: ISI