Asymptotic Analysis for a Class of Quasiconvex Semi-Infinite Programming Problems
Keywords: quasiconvexity, asymptotic analysis, nonconvex optimization, Semi-infinite programming, Zero duality gap
Abstract
We present sufficient conditions to guarantee the existence of solutions for nonconvex semi-infinite optimization problems. These conditions are also employed to establish the lower semicontinuity of the value function at 0. Furthermore, we extend classical results from convex analysis to characterize the global properties of quasiconvex functions based on their behavior at individual points. Our findings generalize and complement existing approaches, addressing problems that extend beyond the scope of previous results.
Más información
| Título según WOS: | Asymptotic Analysis for a Class of Quasiconvex Semi-Infinite Programming Problems |
| Título según SCOPUS: | ID SCOPUS_ID:105013589840 Not found in local SCOPUS DB |
| Volumen: | 207 |
| Número: | 3 |
| Fecha de publicación: | 2025 |
| Idioma: | English |
| DOI: |
10.1007/s10957-025-02821-2 |
| Notas: | ISI, SCOPUS |