Modulation of human-to-swine influenza a virus adaptation by the neuraminidase low-affinity calcium-binding pocket

Cardenas, Matias; Seibert, Brittany; Cowan, Brianna; Caceres, C. Joaquin; Gay, L. Claire; Faccin, Flavio Cargnin; Perez, Daniel R.; Baker, Amy L.; Anderson, Tavis K.; Rajao, Daniela S.

Abstract

--- - Frequent interspecies transmission of human influenza A viruses (FLUAV) to pigs contrasts with the limited subset that establishes in swine. While hemagglutinin mutations are recognized for their role in cross-species transmission, the contribution of neuraminidase remains understudied. Here, the NA's role in FLUAV adaptation was investigated using a swine-adapted H3N2 reassortant virus with human-derived HA and NA segments. Adaptation in pigs resulted in mutations in both HA (A138S) and NA (D113A). The D113A mutation abolished calcium (Ca2+) binding in the low-affinity Ca2+-binding pocket of NA, enhancing enzymatic activity and thermostability under Ca2+-depleted conditions, mirroring swine-origin FLUAV NA behavior. Structural analysis predicts that swine-adapted H3N2 viruses lack Ca2+ binding in this pocket. Further, residue 93 in NA (G93 in human, N93 in swine) also influences Ca2+ binding and impacts NA activity and thermostability, even when D113 is present. These findings demonstrate that mutations in influenza A virus surface proteins alter evolutionary trajectories following interspecies transmission and reveal distinct mechanisms modulating NA activity during FLUAV adaptation, highlighting the importance of Ca2+ binding in the low-affinity calcium-binding pocket. - Modulation of calcium binding in the neuraminidase low-affinity calcium-binding pocket suggests a novel role of calcium during cross-species transmission of Influenza A viruses.

Más información

Título según WOS: ID WOS:001326746200008 Not found in local WOS DB
Título de la Revista: COMMUNICATIONS BIOLOGY
Volumen: 7
Número: 1
Editorial: NATURE PORTFOLIO
Fecha de publicación: 2024
DOI:

10.1038/s42003-024-06928-6

Notas: ISI