Entropy values of chains of partitions of infinite countable sets

Martínez, S.; San Martin, J

Abstract

We study the structure of the chains of partitions ? of countable sets. Our main result asserts that for any chain ? and any probability measure ? the set of entropy values h?(?) = {h?(?) : ? ? ?} is a totally disconnected set in R+ U {+?} with null-Lebesgue measure. The complexity of the set h?(?) is exhibited in an example where h?(?) is a Cantor set with non null Hausdorff dimension.

Más información

Título de la Revista: ROCKY MOUNTAIN JOURNAL OF MATHEMATICS
Volumen: 26
Número: 1
Editorial: ROCKY MT MATH CONSORTIUM
Fecha de publicación: 1996
Página de inicio: 213
Página final: 227
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-0030535713&partnerID=q2rCbXpz
DOI:

10.1216/rmjm/1181072112