Entropy values of chains of partitions of infinite countable sets
Abstract
We study the structure of the chains of partitions ? of countable sets. Our main result asserts that for any chain ? and any probability measure ? the set of entropy values h?(?) = {h?(?) : ? ? ?} is a totally disconnected set in R+ U {+?} with null-Lebesgue measure. The complexity of the set h?(?) is exhibited in an example where h?(?) is a Cantor set with non null Hausdorff dimension.
Más información
Título de la Revista: | ROCKY MOUNTAIN JOURNAL OF MATHEMATICS |
Volumen: | 26 |
Número: | 1 |
Editorial: | ROCKY MT MATH CONSORTIUM |
Fecha de publicación: | 1996 |
Página de inicio: | 213 |
Página final: | 227 |
URL: | http://www.scopus.com/inward/record.url?eid=2-s2.0-0030535713&partnerID=q2rCbXpz |
DOI: |
10.1216/rmjm/1181072112 |