Least energy solutions for elliptic equations in unbounded domains

Del Pino M.A.; Felmer P.L.

Abstract

In this paper we study the existence of least energy solutions to subcritical semilinear elliptic equations of the form ?u - u + f(u) = 0 in ?, u > 0 in ?, u = 0 on ??, u(z) ? 0 as |z| ? ?, z ? ?, where ? is an unbounded domain in RN and f is a C1 function, with appropriate superlinear growth. We state general conditions on the domain ? so that the associated functional has a nontrivial critical point, thus yielding a solution to the equation. Asymptotic results for domains stretched in one direction are also provided.

Más información

Título de la Revista: PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS
Volumen: 126
Número: 1
Editorial: CAMBRIDGE UNIV PRESS
Fecha de publicación: 1996
Página de inicio: 195
Página final: 208
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-21344457145&partnerID=q2rCbXpz
DOI:

10.1017/S0308210500030687