Least energy solutions for elliptic equations in unbounded domains
Abstract
In this paper we study the existence of least energy solutions to subcritical semilinear elliptic equations of the form ?u - u + f(u) = 0 in ?, u > 0 in ?, u = 0 on ??, u(z) ? 0 as |z| ? ?, z ? ?, where ? is an unbounded domain in RN and f is a C1 function, with appropriate superlinear growth. We state general conditions on the domain ? so that the associated functional has a nontrivial critical point, thus yielding a solution to the equation. Asymptotic results for domains stretched in one direction are also provided.
Más información
| Título de la Revista: | PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS |
| Volumen: | 126 |
| Número: | 1 |
| Editorial: | CAMBRIDGE UNIV PRESS |
| Fecha de publicación: | 1996 |
| Página de inicio: | 195 |
| Página final: | 208 |
| URL: | http://www.scopus.com/inward/record.url?eid=2-s2.0-21344457145&partnerID=q2rCbXpz |
| DOI: |
10.1017/S0308210500030687 |