Finite element solution of incompressible fluid-structure vibration problems
Keywords: elasticity, elements, kinematics, spectrum, structure, stream, fluids, fluid, phase, variables, interaction, displacement, elastic, interfaces, vibrations, element, interface, finite, analysis, eigenvalues, method, multipliers, eigenfunctions, Solid, and, Functions, Linear, Incompressible, Lagrange, (mechanical), triangular
Abstract
In this paper we solve an eigenvalue problem arising from the computation of the vibrations of a coupled system, incompressible fluid - elastic structure, in absence of external forces. We use displacement variables for both the solid and the fluid but the fluid displacements are written as curls of a stream function. Classical linear triangular finite elements are used for the solid displacements and for the stream function in the fluid. The kinematic transmission conditions at the fluid-solid interface are taken into account in a weak sense by means of a Lagrange multiplier. The method does not present spurious or circulation modes for non-zero frequencies. Numerical results are given for some test cases. © 1997 by John Wiley & Sons, Ltd.
Más información
Título de la Revista: | INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING |
Volumen: | 40 |
Número: | 8 |
Editorial: | Wiley |
Fecha de publicación: | 1997 |
Página de inicio: | 1435 |
Página final: | 1448 |
URL: | http://www.scopus.com/inward/record.url?eid=2-s2.0-0031127285&partnerID=q2rCbXpz |
DOI: |
10.1002/(SICI)1097-0207(19970430)40:8<1435::AID-NME119>3.0.CO;2-P |