Semi-classical states for nonlinear schrödinger equations
Abstract
We consider existence and asymptotic behavior of solutions for an equation of the form?2?u-V(x)u+f(u)=0,u>0,u?H1 0(?), ((*))where?is a smooth domain in RN, not necessarily bounded. We assume that the potentialVis positive and that it possesses atopologically nontrivialcritical valuec, characterized through a min-max scheme. The functionfis assumed to be locally Hölder continuous having a subcritical, superlinear growth. Further we assume thatfis such that the correspondinglimiting equation inRNhas a unique solution, up to translations. We prove that there exists?0so that for all 0<?<?0, Eq.(*) possesses a solution having exactly one maximum pointx???, such thatV(x?)?cand ?V(x?)?0 as??0. © 1997 Academic Press.
Más información
Título de la Revista: | JOURNAL OF FUNCTIONAL ANALYSIS |
Volumen: | 149 |
Número: | 1 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 1997 |
Página de inicio: | 245 |
Página final: | 265 |
URL: | http://www.scopus.com/inward/record.url?eid=2-s2.0-0031237479&partnerID=q2rCbXpz |