On the collective compactness of strongly continuous semigroups and cosine functions of operators

Henríquez H.R.

Abstract

Let X be a complex Banach spcce, and denote by T a strongly continuous semigroup of linear operators defined on X and by C a cosine function of operators with associated sine function S defined on X. In this note we characterize in terms of spectral properties of the infinitesimal generator those semigroups T and cosine functions C such that {T(t) - I : t ? 0}, {C(t) - I : t ? ?} and {S(t) : t ? ?} are collectively compact sets of bounded linear operators.

Más información

Título de la Revista: TAIWANESE JOURNAL OF MATHEMATICS
Volumen: 2
Número: 4
Editorial: MATHEMATICAL SOC REP CHINA
Fecha de publicación: 1998
Página de inicio: 497
Página final: 509
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-0347776002&partnerID=q2rCbXpz