On the collective compactness of strongly continuous semigroups and cosine functions of operators
Abstract
Let X be a complex Banach spcce, and denote by T a strongly continuous semigroup of linear operators defined on X and by C a cosine function of operators with associated sine function S defined on X. In this note we characterize in terms of spectral properties of the infinitesimal generator those semigroups T and cosine functions C such that {T(t) - I : t ? 0}, {C(t) - I : t ? ?} and {S(t) : t ? ?} are collectively compact sets of bounded linear operators.
Más información
Título de la Revista: | TAIWANESE JOURNAL OF MATHEMATICS |
Volumen: | 2 |
Número: | 4 |
Editorial: | MATHEMATICAL SOC REP CHINA |
Fecha de publicación: | 1998 |
Página de inicio: | 497 |
Página final: | 509 |
URL: | http://www.scopus.com/inward/record.url?eid=2-s2.0-0347776002&partnerID=q2rCbXpz |