Coding nested mixing one-sided subshifts of finite type as Markov shifts having exactly the same alphabet
Abstract
Let X0, X be mixing one-sided subshifts of finite type such that X0 X. We show a necessary and sufficient condition for the existence of mixing Markov shifts Y0, Y, Y0 Y, and a conjugacy it : Y ? X with ?(Y0) = X0, such that the sets of letters appearing in both systems are the same, more precisely, L1(Y0) = L1(Y). © 1998 American Mathematical Society.
Más información
Título de la Revista: | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY |
Volumen: | 126 |
Número: | 4 |
Editorial: | AMER MATHEMATICAL SOC |
Fecha de publicación: | 1998 |
Página de inicio: | 1219 |
Página final: | 1230 |
URL: | http://www.scopus.com/inward/record.url?eid=2-s2.0-33646966799&partnerID=q2rCbXpz |