Dynamical properties of min-max networks.

Goles, E.; Matamala M.; Estévez P.A.

Keywords: model, network, networks, article, artificial, statistical, mathematics, biological, Models,, Neural, Neurological, (computer)

Abstract

In this paper we study the dynamical behavior of a class of neural networks where the local transition rules are max or min functions. We prove that sequential updates define dynamics which reach the equilibrium in O(n2) steps, where n is the size of the network. For synchronous updates the equilibrium is reached in O(n) steps. It is shown that the number of fixed points of the sequential update is at most n. Moreover, given a set of p < or = n vectors, we show how to build a network of size n such that all these vectors are fixed points.

Más información

Título de la Revista: International Journal of Neural Systems
Volumen: 10
Número: 6
Editorial: World Scientific Publishing Co. Pte Ltd
Fecha de publicación: 2000
Página de inicio: 467
Página final: 473
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-0034573245&partnerID=q2rCbXpz