Nucleation and growth mechanism of CdTe at polycrystalline gold surfaces analyzed through ?m/t simulation transients

Gómez H.; Henríquez R.; Schrebler, R; Riveros, G; CORDOVA, R

Keywords: models, growth, crystal, electrochemistry, diffusion, solids, electrocrystallization, crystallization, voltammetry, electrodes, nucleation, cadmium, quartz, gold, polycrystalline, photocurrents, semiconductor, telluride, microbalance, mathematical, cyclic, Materials, in, Electrochemical, potential, Electric, Semiconducting, (EQCM)

Abstract

The nucleation and growth mechanisms of cadmium telluride have been investigated in aqueous H2SO4 solution using polycrystalline gold as substrate. Using cyclic voltammetry as a reference, a series of potential steps experiments were performed in order to simulate the corresponding j/t experimental transients that gave only a current decay proportional to t-1/2. Conducting the potential steps in an electrochemical quartz crystal microbalance (EQCM) allowed recording ?m/t transients that were potential dependent. Introducing some modifications in the classic equations of the nucleation and growth models, these transients gave information about the mechanism of CdTe electrocrystallization. It is proposed that the initial process is associated with the nucleation and growth of the Te islands followed by fast formation of Cd islands and that CdTe is formed through the slow diffusion of these islands. The slow rate of this process was evidenced through the time elapsed before observing a cathodic photocurrent when the electrode surface was illuminated. Gold surface has an influence on the nucleation mechanism favouring the instantaneous over the progressive, specially at more negative values of the final potential step. These results show that ?m/t transient simulations are a suitable tool for studying NGM when convolution of the classical j/t transients does not allow extraction of the appropriate information.

Más información

Título de la Revista: ELECTROCHIMICA ACTA
Volumen: 46
Número: 6
Editorial: PERGAMON-ELSEVIER SCIENCE LTD
Fecha de publicación: 2001
Página de inicio: 821
Página final: 827
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-0342903115&partnerID=q2rCbXpz