On a Rankin-Selberg convolution of two variables for Siegel modular forms

Imamoglu, O; Martin Y.

Abstract

In this article we study a Rankin-Selberg convolution of two complex variables attached to Siegel modular forms of degree 2. We establish its basic analytic properties, find its singular curves and compute some of its residues. In particular, we show that two known Dirichlet series of Rankin-Selberg type, one introduced by Maass and another by Kohnen and Skoruppa, are obtained as residues from this series of two variables. Furthermore, we define and study a collection of Rankin-Selberg convolutions for Jacobi forms of degree 1.

Más información

Título según SCOPUS: On a Rankin-Selberg convolution of two variables for Siegel modular forms
Título de la Revista: FORUM MATHEMATICUM
Volumen: 15
Número: 4
Editorial: WALTER DE GRUYTER GMBH
Fecha de publicación: 2003
Página de inicio: 565
Página final: 589
Idioma: English
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-0042671535&partnerID=q2rCbXpz
Notas: SCOPUS