Schur function identities, their t-analogs, and k-Schur irreducibility
Abstract
We obtain general identities for the product of two Schur functions in the case where one of the functions is indexed by a rectangular partition, and give their t-analogs using vertex operators. We study subspaces forming a filtration for the symmetric function space that lends itself to generalizing the theory of Schur functions and also provides a convenient environment for studying the Macdonald polynomials. We use our identities to prove that the vertex operators leave such subspaces invariant. We finish by showing that these operators act trivially on the k-Schur functions, thus leading to a concept of irreducibility for these functions. © 2003 Elsevier Inc. All rights reserved.
Más información
Título según SCOPUS: | Schur function identities, their t-analogs, and k-Schur irreducibility |
Título de la Revista: | ADVANCES IN MATHEMATICS |
Volumen: | 180 |
Número: | 1 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2003 |
Página de inicio: | 222 |
Página final: | 247 |
Idioma: | English |
URL: | http://www.scopus.com/inward/record.url?eid=2-s2.0-0348159894&partnerID=q2rCbXpz |
DOI: |
10.1016/S0001-8708(03)00002-1 |
Notas: | SCOPUS |