Real-time optimization systems based on grey-box neural models

Cubillos, FA; Lima, EL

Abstract

This paper investigate the feasibility using of grey-box neural type models (GNM) for design and operation of model based Real Time Optimization (RTO) systems operating in a dynamical fashion. The GNM is based on fundamental conservation laws associated with neural networks (NN) used to model uncertain parameters. The proposed approach is applied to the simulated Williams-Otto reactor, considering three GNM process approximations. Obtained results demonstrate the feasibility of the use of the GNM models in the RTO technology in a dynamic fashion. © 2003 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Real-time optimization systems based on grey-box neural models
Título según SCOPUS: Real-time optimization systems based on grey-box neural models
Título de la Revista: 26TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT A
Volumen: 14
Número: C
Editorial: ELSEVIER SCIENCE BV
Fecha de publicación: 2003
Página de inicio: 395
Página final: 400
Idioma: English
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-77956751376&partnerID=q2rCbXpz
Notas: ISI, SCOPUS