On the topology of solenoidal attractors of the cylinder
Abstract
We study the dynamics of skew product endomorphisms acting on the cylinder R/Z×R, of the form(θ,t)→(ℓθ,λt+Ï„(θ)) , where ℓ≥2 is an integer, λ∈(0,1) and Ï„:R/Z→R is a continuous function. We are interested in topological properties of the global attractor Ωλ,Ï„ of this map. Given â„“ and a Lipschitz function Ï„, we show that the attractor set Ωλ,Ï„ is homeomorphic to a closed topological annulus for all λ sufficiently close to 1. Moreover, we prove that Ωλ,Ï„ is a Jordan curve for at most finitely many λ∈(0,1). These results rely on a detailed study of iterated "cohomological" equations of the form Ï„= Lλ1μ1, μ1=Lλ2μ2,..., where Lλμ=μ○mâ„“- λμ and mâ„“:R/Z→R/Z denotes the multiplication by â„“ map. We show the following finiteness result: each Lipschitz function Ï„ can be written in a canonical way as,Ï„=Lλ1○⋯○Lλmμ, where m≥0, λ1,...,λm∈(0,1] and the Lipschitz function μ satisfies μ≠LÎ»Ï for every continuous function Ï and every λ∈(0,1].
Más información
Título según WOS: | On the topology of solenoidal attractors of the cylinder |
Título según SCOPUS: | On the topology of solenoidal attractors of the cylinder |
Título de la Revista: | ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE |
Volumen: | 23 |
Número: | 2 |
Editorial: | GAUTHIER-VILLARS/EDITIONS ELSEVIER |
Fecha de publicación: | 2006 |
Página de inicio: | 209 |
Página final: | 236 |
Idioma: | English |
URL: | http://www.scopus.com/inward/record.url?eid=2-s2.0-31344473492&partnerID=q2rCbXpz |
DOI: |
10.1016/j.anihpc.2005.03.002 |
Notas: | ISI, SCOPUS |