Nonlinear elliptic problems above criticality

Del Pino M.

Abstract

We consider the elliptic problem Δu + up = 0, u > 0 in an exterior domain, Ω = ℝN \ D under zero Dirichlet and vanishing conditions, where D is smooth and bounded, and p is supercritical, namely p > N+2/N-2. We prove that this problem has infinitely many solutions with slow decay O(|x|-2/p-1 at infinity. In addition, a fast decay solution exists if p is close enough to the critical exponent. If p differs from certain sequence of resonant values which tends to infinity, then the Dirichlet problem is also solvabe in a bounded domain Ω with a sufficiently small spherical hole. © Birkhäuser Verlag, Basel 2006.

Más información

Título según SCOPUS: Nonlinear elliptic problems above criticality
Título de la Revista: MILAN JOURNAL OF MATHEMATICS
Volumen: 74
Número: 1
Editorial: SPRINGER BASEL AG
Fecha de publicación: 2006
Página de inicio: 313
Página final: 338
Idioma: eng
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-33751528861&partnerID=q2rCbXpz
DOI:

10.1007/s00032-006-0058-0

Notas: SCOPUS