Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity

Coville J; Dávila J.; Martínez, S.

Abstract

Let J ∈ C(ℝ), J ≥ 0, ∫ℝ J = 1 and consider the nonlocal diffusion operator M[u] = J * u - u. We study the equation Mu + ∫(x,u) = 0, u ≥ 0, in ℝ, where f is a KPP-type nonlinearity, periodic in x. We show that the principal eigenvalue of the linearization around zero is well defined and that a nontrivial solution of the nonlinear problem exists if and only if this eigenvalue is negative. We prove that if, additionally, J is symmetric, then the nontrivial solution is unique. © 2008 Society for Industrial and Applied Mathematics.

Más información

Título según WOS: Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity
Título según SCOPUS: Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity
Título de la Revista: SIAM JOURNAL ON MATHEMATICAL ANALYSIS
Volumen: 39
Número: 5
Editorial: SIAM PUBLICATIONS
Fecha de publicación: 2008
Página de inicio: 1693
Página final: 1709
Idioma: English
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-52649153528&partnerID=q2rCbXpz
DOI:

10.1137/060676854

Notas: ISI, SCOPUS