Identifying the intent of a user query using support vector machines

Mendoza M.; Zamora J.

Keywords: information, support, classification, machines, vectors, representations, services, data, theory, query, vector, retrieval, decision, User, Towers, High-precision, Clickthrough

Abstract

In this paper we introduce a high-precision query classification method to identify the intent of a user query given that it has been seen in the past based on informational, navigational, and transactional categorization. We propose using three vector representations of queries which, using support vector machines, allow past queries to be classified by user's intents. The queries have been represented as vectors using two factors drawn from click-through data: the time users take to review the documents they select and the popularity (quantity of preferences) of the selected documents. Experimental results show that time is the factor that yields higher precision in classification. The experiments shown in this work illustrate that the proposed classifiers can effectively identify the intent of past queries with high-precision. © 2009 Springer.

Más información

Título de la Revista: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen: 5721
Editorial: Society of Laparoendoscopic Surgeons
Fecha de publicación: 2009
Página de inicio: 131
Página final: 142
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-70350656059&partnerID=q2rCbXpz