Maximizing the algebraic connectivity for a subclass of caterpillars
Abstract
A caterpillar is a tree in which the removal of all pendant vertices makes it a path. Let d ≥ 3 and n ≥ 6 be given. Let Pd - 1 be the path on d - 1 vertices and K1, p be the star of p + 1 vertices. Let p = [p1, p2, ..., pd - 1] such that ∀ i, 1 ≤ i ≤ d - 1, pi. Let C (p) be the caterpillar obtained from d - 1 stars K1, pi and the path Pd - 1 by identifying the root of K1, pi with the i-vertex of Pd - 1. For a given n ≥ 2 (d - 1), let C = {C (p) : ∑i = 1, d - 1 pi = n - d + 1}. In this work, we give the caterpillar in C maximizing the algebraic connectivity. © 2009 Elsevier B.V. All rights reserved.
Más información
Título según SCOPUS: | Maximizing the algebraic connectivity for a subclass of caterpillars |
Título de la Revista: | Electronic Notes in Discrete Mathematics |
Volumen: | 35 |
Número: | C |
Editorial: | Elsevier |
Fecha de publicación: | 2009 |
Página de inicio: | 65 |
Página final: | 70 |
Idioma: | eng |
URL: | http://www.scopus.com/inward/record.url?eid=2-s2.0-70949088707&partnerID=q2rCbXpz |
DOI: |
10.1016/j.endm.2009.11.012 |
Notas: | SCOPUS |