Fluctuations of the front in a one dimensional model of X +Y ? 2X
Abstract
We consider a model of the reaction X + Y ? 2X on the integer lattice in which Y particles do not move while X particles move as independent continuous time, simple symmetric random walks. Y particles are transformed instantaneously to X particles upon contact. We start with a fixed number a ? 1 of Y particles at each site to the right of the origin. We prove a central limit theorem for the rightmost visited site of the X particles up to time t and show that the law of the environment as seen from the front converges to a unique invariant measure. © 2009 American Mathematical Society.
Más información
| Título de la Revista: | TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY |
| Volumen: | 361 |
| Número: | 11 |
| Editorial: | AMER MATHEMATICAL SOC |
| Fecha de publicación: | 2009 |
| Página de inicio: | 6165 |
| Página final: | 6189 |
| URL: | http://www.scopus.com/inward/record.url?eid=2-s2.0-77950663613&partnerID=q2rCbXpz |