Fluctuations of the front in a one dimensional model of X +Y ? 2X

Comets, F; Quastel, J

Abstract

We consider a model of the reaction X + Y ? 2X on the integer lattice in which Y particles do not move while X particles move as independent continuous time, simple symmetric random walks. Y particles are transformed instantaneously to X particles upon contact. We start with a fixed number a ? 1 of Y particles at each site to the right of the origin. We prove a central limit theorem for the rightmost visited site of the X particles up to time t and show that the law of the environment as seen from the front converges to a unique invariant measure. © 2009 American Mathematical Society.

Más información

Título de la Revista: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
Volumen: 361
Número: 11
Editorial: AMER MATHEMATICAL SOC
Fecha de publicación: 2009
Página de inicio: 6165
Página final: 6189
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-77950663613&partnerID=q2rCbXpz