Fast and compact prefix codes

Gagie, T; Navarro G.; Nekrich Y.

Keywords: distributions, structures, length, science, computer, data, probability, codes, case, Worst, Prefix, Codeword

Abstract

It is well-known that, given a probability distribution over n characters, in the worst case it takes ?(n logn) bits to store a prefix code with minimum expected codeword length. However, in this paper we first show that, for any ? with 0<?<1/2 and 1 /? = O(polylog(n)), it takes O(n loglog(1 / ?)) bits to store a prefix code with expected codeword length within an additive ? of the minimum. We then show that, for any constant c>1, it takes O(n 1 / c logn) bits to store a prefix code with expected codeword length at most c times the minimum. In both cases, our data structures allow us to encode and decode any character in O(1) time. © 2010 Springer-Verlag Berlin Heidelberg.

Más información

Título de la Revista: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volumen: 5901
Editorial: Society of Laparoendoscopic Surgeons
Fecha de publicación: 2010
Página de inicio: 419
Página final: 427
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-77249179229&partnerID=q2rCbXpz