Necessary and sufficient conditions for zero-rate density estimation
Keywords: theorems, constraints, density, learning, constraint, variation, scheme, data, theory, precision, estimation, arbitrary, codes, coding, universal, objectives, source, Rate, conditions, Total, (symbols), Sufficient, Memoryless
Abstract
This work addresses the problem of universal density estimation under an operational data-rate constraint. We present a coding theorem that stipulates necessary and sufficient conditions to learn and transmit a memoryless source distribution with arbitrary precision (in total variations), under an asymptotic zero-rate regime, in bits per sample. In the process, we propose a concrete coding scheme to achieve this learning objective, adopting the Skeleton estimate developed by Y. Yatracos [1], [2]. © 2011 IEEE.
Más información
Título de la Revista: | 2011 IEEE INFORMATION THEORY WORKSHOP (ITW) |
Editorial: | IEEE |
Fecha de publicación: | 2011 |
Página de inicio: | 613 |
Página final: | 617 |
URL: | http://www.scopus.com/inward/record.url?eid=2-s2.0-83655191077&partnerID=q2rCbXpz |