Necessary and sufficient conditions for zero-rate density estimation

Silva J.F.; Derpich M.S.

Keywords: theorems, constraints, density, learning, constraint, variation, scheme, data, theory, precision, estimation, arbitrary, codes, coding, universal, objectives, source, Rate, conditions, Total, (symbols), Sufficient, Memoryless

Abstract

This work addresses the problem of universal density estimation under an operational data-rate constraint. We present a coding theorem that stipulates necessary and sufficient conditions to learn and transmit a memoryless source distribution with arbitrary precision (in total variations), under an asymptotic zero-rate regime, in bits per sample. In the process, we propose a concrete coding scheme to achieve this learning objective, adopting the Skeleton estimate developed by Y. Yatracos [1], [2]. © 2011 IEEE.

Más información

Título de la Revista: 2011 IEEE INFORMATION THEORY WORKSHOP (ITW)
Editorial: IEEE
Fecha de publicación: 2011
Página de inicio: 613
Página final: 617
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-83655191077&partnerID=q2rCbXpz