Meta-Learning based optimization of social feature extraction inference system

Ormazabal W.; Arredondo T.; Creixell, W.; Contreras S.; Olivares, P

Keywords: systems, optimization, intelligence, inference, classification, extraction, artificial, methods, frameworks, feature, generic, Optimizers, Metalearning

Abstract

In this article we propose a generic framework for Meta Learning (MTL) of parameters and models used in the optimization of inference systems. This generic optimization approach can be applied to any hypothesis or learner as long as the optimizer can support the parameters and model values required. This proposal is evaluated classifying the position and type of users in a social database. The obtained results are contrasted with other classification methods and with manually optimized inference systems.

Más información

Título de la Revista: 1604-2004: SUPERNOVAE AS COSMOLOGICAL LIGHTHOUSES
Volumen: 1
Editorial: ASTRONOMICAL SOC PACIFIC
Fecha de publicación: 2011
Página de inicio: 404
Página final: 409
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-84866065189&partnerID=q2rCbXpz