GAIN OF REGULARITY FOR AN NONLINEAR DISPERSIVE EQUATION KORTEWEG - DE VRIES - BURGERS TYPE
Abstract
In this papers we study smoothness properties of solutions. We consider the equation of Korteweg - de Vries - Burgers type (1) {ut + ?xf(u) = ? ?x2 - ? ?x3 u(x, 0) = ?(x) with -? < x < +? and t > 0. The flux f = f(u) is a given smooth function satisfying certain assumptions to be listed shortly. It is shown under certain additional conditions on f that C? - solutions u(x, t) are obtained for all t > 0 if the initial data u(x, 0) = ?(x) decays faster than polinomially on IR+ = {x ? IR; x > 0} and has certain initial Sobolev regularity.
Más información
| Título según SCOPUS: | Gain of regularity for an nonlinear dispersive equation Korteweg - De Vries - Burgers type |
| Título según SCIELO: | GAIN OF REGULARITY FOR AN NONLINEAR DISPERSIVE EQUATION KORTEWEG - DE VRIES - BURGERS TYPE |
| Título de la Revista: | Proyecciones (Antofagasta) - Revista de matem�tica |
| Volumen: | 19 |
| Número: | 3 |
| Editorial: | Departamento de Matemáticas, Universidad Católica del Norte |
| Fecha de publicación: | 2000 |
| Página de inicio: | 207 |
| Página final: | 226 |
| Idioma: | en |
| URL: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172000000300001&lng=en&nrm=iso&tlng=en |
| DOI: |
10.4067/S0716-09172000000300001 |
| Notas: | SCIELO, SCOPUS |