REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*

Soto, Ricardo L.

Abstract

"Let Λ= {λ1, λ2, . . . , λn} be a set of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) is the problem of determining necessary and su.cient conditions in order that Λmay be the spectrum of an entrywise nonnegative n Χ n matrix. If there exists a nonnegative matrix A with spectrum Λ we say that Λ is realized by A.If the matrix A must be symmetric we have the symmetric nonnegative inverse eigenvalue problem (SNIEP). This paper presents a simple realizability criterion by symmetric nonnegative matrices. The proof is constructive in the sense that one can explicitly construct symmetric nonnegative matrices realizing Λ"

Más información

Título según SCIELO: REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*
Título de la Revista: Proyecciones (Antofagasta) - Revista de matemática
Volumen: 24
Número: 1
Editorial: Departamento de Matemáticas, Universidad Católica del Norte
Fecha de publicación: 2005
Página de inicio: 65
Página final: 78
Idioma: en
URL: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000100006&lng=en&nrm=iso&tlng=en
DOI:

10.4067/S0716-09172005000100006

Notas: SCIELO