REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES*
Abstract
"Let Λ= {λ1, λ2, . . . , λn} be a set of complex numbers. The nonnegative inverse eigenvalue problem (NIEP) is the problem of determining necessary and su.cient conditions in order that Λmay be the spectrum of an entrywise nonnegative n Χ n matrix. If there exists a nonnegative matrix A with spectrum Λ we say that Λ is realized by A.If the matrix A must be symmetric we have the symmetric nonnegative inverse eigenvalue problem (SNIEP). This paper presents a simple realizability criterion by symmetric nonnegative matrices. The proof is constructive in the sense that one can explicitly construct symmetric nonnegative matrices realizing Λ"
Más información
Título según SCIELO: | REALIZABILITY BY SYMMETRIC NONNEGATIVE MATRICES* |
Título de la Revista: | Proyecciones (Antofagasta) - Revista de matemática |
Volumen: | 24 |
Número: | 1 |
Editorial: | Departamento de Matemáticas, Universidad Católica del Norte |
Fecha de publicación: | 2005 |
Página de inicio: | 65 |
Página final: | 78 |
Idioma: | en |
URL: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172005000100006&lng=en&nrm=iso&tlng=en |
DOI: |
10.4067/S0716-09172005000100006 |
Notas: | SCIELO |