EXISTENCE OF SOLUTIONS OF SEMILINEAR SYSTEMS IN c 2

Hidalgo, Ruben; Godoy, Mauricio

Abstract

"Let Q : be a symmetric and positive semi-definite linear operator and f j : (j = 1, 2, ...) be real functions so that, f j(0) = 0 and, for every x = (x1, x2, ....) , it holds that f (x) := (f1(x1), f2(x2), ...) . Sufficient conditions for the existence of non-trivial solutions to the semilinear problem Qx = f (x) are provided. Moreover, if G is a group of orthogonal linear automorphisms of which commute with Q, then such sufficient conditions ensure the existence of non-trivial solutions which are invariant under G. As a consequence, sufficient conditions to ensure solutions of nonlinear partial difference equations on finite degree graphs with vertex set being either finite or infinitely countable are obtained. We consider adaptations to graphs of both Matukuma type equations and Helmholtz equations and study the existence of their solutions."

Más información

Título según SCIELO: EXISTENCE OF SOLUTIONS OF SEMILINEAR SYSTEMS IN c 2
Título de la Revista: Proyecciones (Antofagasta) - Revista de matemática
Volumen: 27
Número: 2
Editorial: Departamento de Matemáticas, Universidad Católica del Norte
Fecha de publicación: 2008
Página de inicio: 171
Página final: 183
Idioma: en
URL: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172008000200004&lng=en&nrm=iso&tlng=en
DOI:

10.4067/S0716-09172008000200004

Notas: SCIELO