GRAPHS r-POLAR SPHERICAL REALIZATIONP
Abstract
The graph to considered will be in general simple and finite, graphs with a nonempty set of edges. For a graph G, V(G) denote the set of vertices and E(G) denote the set of edges. Now, let Pr = (0, 0, 0, r) ? R4, r ? R+ . The r-polar sphere, denoted by S Pr , is defined by {x ? R4/ x = 1 ? x ? Pr }: The primary target of this work is to present the concept of r-Polar Spherical Realization of a graph. That idea is the following one: If G is a graph and h : V (G) ? S Pr is a injective function, them the r-Polar Spherical Realization of G, denoted by G*, it is a pair (V (G*), E(G*)) so that V (G*) = {h(v)/v ? V (G)} and E(G*) = {arc(h(u)h(v))/uv ? E(G)}, in where arc(h(u)h(v)) it is the arc of curve contained in the intersection of the plane defined by the points h(u), h(v), Pr and the r-polar sphere.
Más información
Título según SCIELO: | GRAPHS r-POLAR SPHERICAL REALIZATIONP |
Título de la Revista: | Proyecciones (Antofagasta) - Revista de matemática |
Volumen: | 29 |
Número: | 1 |
Editorial: | Departamento de Matemáticas, Universidad Católica del Norte |
Fecha de publicación: | 2010 |
Página de inicio: | 31 |
Página final: | 39 |
Idioma: | en |
URL: | http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0716-09172010000100004&lng=en&nrm=iso&tlng=en |
DOI: |
10.4067/S0716-09172010000100004 |
Notas: | SCIELO |