BOUNDS FOR CONFORMAL AUTOMORPHISMS OF RIEMANN SURFACES WITH CONDITION (A)

Hidalgo, Ruben

Abstract

In this note we consider a class of groups of conformai automorphisms of closed Riemann surfaces containing those which can be lifted to some Schottky uniformization. These groups are those which satisfy a necessary condition for the Schottky lifting property. We find that all these groups have upper bound 12(g -1), where g ? 1 is the genus of the surface. We also describe a sequence of infinite genera g1 < 02 < ? for which these upper bound is attained. Also lower bounds are found, for instancei) 4(0 + 1) for even genus and 8(g-1) for odd genus. Also, for cyclic groups in such a family sharp upper bounds are given.

Más información

Título según SCOPUS: Bounds for conformal automorphisms of riemann surfaces with condition (A)
Título de la Revista: Proyecciones (Antofagasta) - Revista de matemática
Volumen: 20
Número: 2
Editorial: Departamento de Matemáticas, Universidad Católica del Norte
Fecha de publicación: 2001
Página de inicio: 139
Página final: 175
Idioma: English
URL: http://www.scielo.cl/pdf/proy/v20n2/art02.pdf
Notas: SCOPUS