BOUNDS FOR CONFORMAL AUTOMORPHISMS OF RIEMANN SURFACES WITH CONDITION (A)
Abstract
In this note we consider a class of groups of conformai automorphisms of closed Riemann surfaces containing those which can be lifted to some Schottky uniformization. These groups are those which satisfy a necessary condition for the Schottky lifting property. We find that all these groups have upper bound 12(g -1), where g ? 1 is the genus of the surface. We also describe a sequence of infinite genera g1 < 02 < ? for which these upper bound is attained. Also lower bounds are found, for instancei) 4(0 + 1) for even genus and 8(g-1) for odd genus. Also, for cyclic groups in such a family sharp upper bounds are given.
Más información
Título según SCOPUS: | Bounds for conformal automorphisms of riemann surfaces with condition (A) |
Título de la Revista: | Proyecciones (Antofagasta) - Revista de matemática |
Volumen: | 20 |
Número: | 2 |
Editorial: | Departamento de Matemáticas, Universidad Católica del Norte |
Fecha de publicación: | 2001 |
Página de inicio: | 139 |
Página final: | 175 |
Idioma: | English |
URL: | http://www.scielo.cl/pdf/proy/v20n2/art02.pdf |
Notas: | SCOPUS |