Inverse source problems for eddy current equations
Abstract
We study the inverse source problem for the eddy current approximation of Maxwell equations. As for the full system of Maxwell equations, we show that a volume current source cannot be uniquely identified by knowledge of the tangential components of the electromagnetic fields on the boundary, and we characterize the space of non-radiating sources. On the other hand, we prove that the inverse source problem has a unique solution if the source is supported on the boundary of a subdomain or if it is the sum of a finite number of dipoles. We address the applicability of this result for the localization of brain activity from electroencephalography and magnetoencephalography measurements. © 2012 IOP Publishing Ltd.
Más información
Título según WOS: | Inverse source problems for eddy current equations |
Título según SCOPUS: | Inverse source problems for eddy current equations |
Título de la Revista: | INVERSE PROBLEMS |
Volumen: | 28 |
Número: | 1 |
Editorial: | IOP PUBLISHING LTD |
Fecha de publicación: | 2012 |
Idioma: | English |
URL: | http://www.scopus.com/inward/record.url?eid=2-s2.0-84855410252&partnerID=40&md5=d727d280a668a47c93309ad9b336eaae |
DOI: |
10.1088/0266-5611/28/1/015006 |
Notas: | ISI, SCOPUS |