Constructing symmetric informationally complete positive-operator-valued measures in Bloch space

salazar, r; Goyeneche D.; Delgado, A.; SAAVEDRA, C

Abstract

Here we study the construction of symmetric informationally complete positive-operator-valued measures (SIC-POVMs) in the Bloch space. In this space an SIC-POVM corresponds to a regular simplex, that is a set of real equiangular, unitary vectors. Since the Bloch space also contains vectors which do not describe quantum states, it is necessary to add an extra condition to enforce the members of the simplex to describe pure quantum states. We show that in the case of a three-dimensional quantum systems it is possible to find such a simplex in an analytical way. The solution turns out to be unitarily equivalent to a Weyl-Heisenberg covariant SIC-POVM. © 2011 Published by Elsevier B.V.

Más información

Título según WOS: Constructing symmetric informationally complete positive-operator-valued measures in Bloch space
Título según SCOPUS: Constructing symmetric informationally complete positive-operator-valued measures in Bloch space
Título de la Revista: Physics Letters A
Volumen: 376
Número: 4
Editorial: Elsevier
Fecha de publicación: 2012
Página de inicio: 325
Página final: 329
Idioma: English
URL: http://www.scopus.com/inward/record.url?eid=2-s2.0-84855196833&partnerID=40&md5=74d9a909bd1299491f2664219d548339
DOI:

10.1016/j.physleta.2011.10.074

Notas: ISI, SCOPUS