Localized chaotic patterns in weakly dissipative systems

Urzagasti, D; Laroze, D; Pleiner, H.

Abstract

A generalized parametrically driven damped nonlinear Schrodinger equation is used to describe, close to the resonance, the dynamics of weakly dissipative systems, like a harmonically coupled pendula chain or an easy-plane magnetic wire. The combined effects of parametric forcing, spatial coupling, and dissipation allows for the existence of stable non-trivial uniform states as well as homogeneous pattern states. The latter can be regular or chaotic. A new family of localized states that connect asymptotically a non-trivial uniform state with a spatio-temporal chaotic pattern is numerically found. We discuss the parameter range, where these localized structures exist. This article is dedicated to Prof. Helmut R. Brand on the occasion of his 60th birthday.

Más información

Título según WOS: Localized chaotic patterns in weakly dissipative systems
Título de la Revista: EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS
Volumen: 223
Número: 1
Editorial: SPRINGER HEIDELBERG
Fecha de publicación: 2014
Página de inicio: 141
Página final: 154
Idioma: English
URL: http://link.springer.com/10.1140/epjst/e2014-02089-x
DOI:

10.1140/epjst/e2014-02089-x

Notas: ISI