Localized chaotic patterns in weakly dissipative systems
Abstract
A generalized parametrically driven damped nonlinear Schrodinger equation is used to describe, close to the resonance, the dynamics of weakly dissipative systems, like a harmonically coupled pendula chain or an easy-plane magnetic wire. The combined effects of parametric forcing, spatial coupling, and dissipation allows for the existence of stable non-trivial uniform states as well as homogeneous pattern states. The latter can be regular or chaotic. A new family of localized states that connect asymptotically a non-trivial uniform state with a spatio-temporal chaotic pattern is numerically found. We discuss the parameter range, where these localized structures exist. This article is dedicated to Prof. Helmut R. Brand on the occasion of his 60th birthday.
Más información
Título según WOS: | Localized chaotic patterns in weakly dissipative systems |
Título de la Revista: | EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS |
Volumen: | 223 |
Número: | 1 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2014 |
Página de inicio: | 141 |
Página final: | 154 |
Idioma: | English |
URL: | http://link.springer.com/10.1140/epjst/e2014-02089-x |
DOI: |
10.1140/epjst/e2014-02089-x |
Notas: | ISI |