A posteriori error analysis of twofold saddle point variational formulations for nonlinear boundary value problems

Garralda-Guillem A.I.; Galan M.R.; Gatica G.N.; Marquez, A

Abstract

In this paper we recast the analysis of twofold saddle point variational formulations for several nonlinear boundary value problems arising in continuum mechanics, and derive reliable and efficient residual-based a posteriori error estimators for the associated Galerkin schemes. We illustrate the main results with nonlinear elliptic equations modelling heat conduction and hyperelasticity. The main tools of our analysis include a global inf-sup condition for a linearization of the problem, Helmholtz's decompositions, local approximation properties of the Raviart-Thomas and Clement interpolation operators, inverse inequalities, and the localization technique based on triangle-bubble and edge-bubble functions. Finally, several numerical results confirming the theoretical properties of the estimator and showing the behaviour of the associated adaptive algorithms are provided.

Más información

Título según WOS: A posteriori error analysis of twofold saddle point variational formulations for nonlinear boundary value problems
Título de la Revista: IMA JOURNAL OF NUMERICAL ANALYSIS
Volumen: 34
Número: 1
Editorial: OXFORD UNIV PRESS
Fecha de publicación: 2014
Página de inicio: 326
Página final: 361
Idioma: English
URL: http://imanum.oxfordjournals.org/cgi/doi/10.1093/imanum/drt006
DOI:

10.1093/imanum/drt006

Notas: ISI