A review of feature selection methods based on mutual information

Vergara, JR; Estevez, PA

Abstract

In this work, we present a review of the state of the art of information-theoretic feature selection methods. The concepts of feature relevance, redundance, and complementarity (synergy) are clearly defined, as well as Markov blanket. The problem of optimal feature selection is defined. A unifying theoretical framework is described, which can retrofit successful heuristic criteria, indicating the approximations made by each method. A number of open problems in the field are presented.

Más información

Título según WOS: A review of feature selection methods based on mutual information
Título de la Revista: NEURAL COMPUTING & APPLICATIONS
Volumen: 24
Número: 1
Editorial: SPRINGER LONDON LTD
Fecha de publicación: 2014
Página de inicio: 175
Página final: 186
Idioma: English
URL: http://link.springer.com/10.1007/s00521-013-1368-0
DOI:

10.1007/s00521-013-1368-0

Notas: ISI