Regularity of mild solutions for a class of fractional order differential equations

Lizama C.; Poblete F.

Abstract

In this article we show sufficient conditions ensuring the existence and uniqueness of a mild solution to the equation D alpha u(t) = Au(t) + D alpha-1f (t, u(t)), 1 < alpha <= 2; t is an element of R, (*) in the same space where f belongs. Here A is a sectorial operator defined in a Banach space X; Da is the fractional derivative in the Riemann-Liouville sense and f (x); is an element of Omega(X) X is an element of X for each x 2 X, where X is an element of X is a vector-valued subspace of the space of continuous and bounded functions. The subspaces XdX_ that we will consider in this article are the space of periodic, almost periodic, almost automorphic and compact almost automorphic vector- valued functions, among others. In particular, we extend and unify recent results established for the equation d in the papers Agarwal et al. (2010), Cuevas et al. (2010) and Cuevas and Lizama (2008). (C) 2013 Elsevier Inc. All rights reserved.

Más información

Título según WOS: Regularity of mild solutions for a class of fractional order differential equations
Título según SCOPUS: Regularity of mild solutions for a class of fractional order differential equations
Título de la Revista: APPLIED MATHEMATICS AND COMPUTATION
Volumen: 224
Editorial: Elsevier Science Inc.
Fecha de publicación: 2013
Página de inicio: 803
Página final: 816
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S009630031300979X
DOI:

10.1016/j.amc.2013.09.009

Notas: ISI, SCOPUS