Regularity of mild solutions for a class of fractional order differential equations
Abstract
In this article we show sufficient conditions ensuring the existence and uniqueness of a mild solution to the equation D alpha u(t) = Au(t) + D alpha-1f (t, u(t)), 1 < alpha <= 2; t is an element of R, (*) in the same space where f belongs. Here A is a sectorial operator defined in a Banach space X; Da is the fractional derivative in the Riemann-Liouville sense and f (x); is an element of Omega(X) X is an element of X for each x 2 X, where X is an element of X is a vector-valued subspace of the space of continuous and bounded functions. The subspaces XdX_ that we will consider in this article are the space of periodic, almost periodic, almost automorphic and compact almost automorphic vector- valued functions, among others. In particular, we extend and unify recent results established for the equation d in the papers Agarwal et al. (2010), Cuevas et al. (2010) and Cuevas and Lizama (2008). (C) 2013 Elsevier Inc. All rights reserved.
Más información
Título según WOS: | Regularity of mild solutions for a class of fractional order differential equations |
Título según SCOPUS: | Regularity of mild solutions for a class of fractional order differential equations |
Título de la Revista: | APPLIED MATHEMATICS AND COMPUTATION |
Volumen: | 224 |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2013 |
Página de inicio: | 803 |
Página final: | 816 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S009630031300979X |
DOI: |
10.1016/j.amc.2013.09.009 |
Notas: | ISI, SCOPUS |