MULTISCALE HYBRID-MIXED METHOD

Araya, R; Harder, C; Paredes, D; Valentin F.

Abstract

This work presents a priori and a posteriori error analyses of a new multiscale hybrid-mixed method (MHM) for an elliptic model. Specially designed to incorporate multiple scales into the construction of basis functions, this finite element method relaxes the continuity of the primal variable through the action of Lagrange multipliers, while assuring the strong continuity of the normal component of the flux (dual variable). As a result, the dual variable, which stems from a simple postprocessing of the primal variable, preserves local conservation. We prove existence and uniqueness of a solution for the MHM method as well as optimal convergence estimates of any order in the natural norms. Also, we propose a face-residual a posteriori error estimator, and prove that it controls the error of both variables in the natural norms. Several numerical tests assess the theoretical results.

Más información

Título según WOS: MULTISCALE HYBRID-MIXED METHOD
Título según SCOPUS: Multiscale hybrid-mixed method
Título de la Revista: SIAM JOURNAL ON NUMERICAL ANALYSIS
Volumen: 51
Número: 6
Editorial: SIAM PUBLICATIONS
Fecha de publicación: 2013
Página de inicio: 3505
Página final: 3531
Idioma: English
URL: http://epubs.siam.org/doi/abs/10.1137/120888223
DOI:

10.1137/120888223

Notas: ISI, SCOPUS