MULTISCALE HYBRID-MIXED METHOD
Abstract
This work presents a priori and a posteriori error analyses of a new multiscale hybrid-mixed method (MHM) for an elliptic model. Specially designed to incorporate multiple scales into the construction of basis functions, this finite element method relaxes the continuity of the primal variable through the action of Lagrange multipliers, while assuring the strong continuity of the normal component of the flux (dual variable). As a result, the dual variable, which stems from a simple postprocessing of the primal variable, preserves local conservation. We prove existence and uniqueness of a solution for the MHM method as well as optimal convergence estimates of any order in the natural norms. Also, we propose a face-residual a posteriori error estimator, and prove that it controls the error of both variables in the natural norms. Several numerical tests assess the theoretical results.
Más información
Título según WOS: | MULTISCALE HYBRID-MIXED METHOD |
Título según SCOPUS: | Multiscale hybrid-mixed method |
Título de la Revista: | SIAM JOURNAL ON NUMERICAL ANALYSIS |
Volumen: | 51 |
Número: | 6 |
Editorial: | SIAM PUBLICATIONS |
Fecha de publicación: | 2013 |
Página de inicio: | 3505 |
Página final: | 3531 |
Idioma: | English |
URL: | http://epubs.siam.org/doi/abs/10.1137/120888223 |
DOI: |
10.1137/120888223 |
Notas: | ISI, SCOPUS |