Weakly driven anomalous diffusion in non-ergodic regime: an analytical solution
Abstract
We derive the probability density of a diffusion process generated by nonergodic velocity fluctuations in presence of a weak potential, using the Liouville equation approach. The velocity of the diffusing particle undergoes dichotomic fluctuations with a given distribution psi(tau) of residence times in each velocity state. We obtain analytical solutions for the diffusion process in a generic external potential and for a generic statistics of residence times, including the non-ergodic regime in which the mean residence time diverges. We show that these analytical solutions are in agreement with numerical simulations.
Más información
Título según WOS: | Weakly driven anomalous diffusion in non-ergodic regime: an analytical solution |
Título según SCOPUS: | Weakly driven anomalous diffusion in non-ergodic regime: An analytical solution |
Título de la Revista: | EUROPEAN PHYSICAL JOURNAL B |
Volumen: | 87 |
Número: | 1 |
Editorial: | Springer |
Fecha de publicación: | 2014 |
Idioma: | English |
URL: | http://link.springer.com/10.1140/epjb/e2013-40701-3 |
DOI: |
10.1140/epjb/e2013-40701-3 |
Notas: | ISI, SCOPUS |