Weakly driven anomalous diffusion in non-ergodic regime: an analytical solution

Bologna, M; Aquino, G

Abstract

We derive the probability density of a diffusion process generated by nonergodic velocity fluctuations in presence of a weak potential, using the Liouville equation approach. The velocity of the diffusing particle undergoes dichotomic fluctuations with a given distribution psi(tau) of residence times in each velocity state. We obtain analytical solutions for the diffusion process in a generic external potential and for a generic statistics of residence times, including the non-ergodic regime in which the mean residence time diverges. We show that these analytical solutions are in agreement with numerical simulations.

Más información

Título según WOS: Weakly driven anomalous diffusion in non-ergodic regime: an analytical solution
Título según SCOPUS: Weakly driven anomalous diffusion in non-ergodic regime: An analytical solution
Título de la Revista: EUROPEAN PHYSICAL JOURNAL B
Volumen: 87
Número: 1
Editorial: Springer
Fecha de publicación: 2014
Idioma: English
URL: http://link.springer.com/10.1140/epjb/e2013-40701-3
DOI:

10.1140/epjb/e2013-40701-3

Notas: ISI, SCOPUS